Zeros of the Modular Parametrization of Rational Elliptic Curves

نویسندگان

  • Lisa Kodgis
  • Xander Faber
  • Michelle Manes
  • George Wilkens
  • LISA KODGIS
چکیده

Some Rational elliptic curves whose modular parametrization is given by an Eichler integral were considered. The points, other than cusps, that map to zero under modular parametrization were studied computationally. Surprisingly, these zeros appear to be CM-points. This paper is organized under the following section headings:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

On Zeros of Eichler Integrals

Eichler integrals play an integral part in the modular parametrizations of elliptic curves. In her master’s thesis, Kodgis conjectures several dozen zeros of Eichler integrals for elliptic curves with conductor ≤ 179. In this paper we prove a general theorem which confirms many of these conjectured zeros. We also provide two ways to generate infinite families of elliptic curves with certain zer...

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

A Note on Zeros of L-series of Elliptic Curves

In this note we study an analogy between a positive definite quadratic form for elliptic curves over finite fields and a positive definite quadratic form for elliptic curves over the rational number field. A question is posed of which an affirmative answer would imply the analogue of the Riemann hypothesis for elliptic curves over the rational number field.

متن کامل

On the Elliptic Curves of the Form $y^2 = x^3 − pqx$

‎By the Mordell‎- ‎Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves‎, ‎where p and q are distinct primes‎. ‎We give infinite families of elliptic curves of the form y2=x3-pqx with rank two‎, ‎three and four‎, ‎assuming a conjecture of Schinzel ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011